Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits.
نویسندگان
چکیده
Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment.
منابع مشابه
Investment in Seed Physical Defence Is Associated with Species' Light Requirement for Regeneration and Seed Persistence: Evidence from Macaranga Species in Borneo
The seed stage is often critical in determining the regeneration success of plants. Seeds must survive an array of seed predators and pathogens and germinate under conditions favourable for seedling establishment. To maximise recruitment success plants protect seeds using a diverse set of chemical and physical defences. However, the relationship between these defence classes, and their associat...
متن کاملPhysiological trade-offs in the complexity of pine tree defensive chemistry.
Like all organisms on Earth, trees must finely tune the relative allocation of resources to their living functions (namely growth, maintenance, defence and reproduction), seeking to optimize the costs and benefits (Bazzaz et al. 1987). As resources are limited and those allocated to one trait cannot be allocated to another, conflicts in resource allocation may result in trade-offs among differe...
متن کاملPhylogenetic correlations among chemical and physical plant defenses change with ontogeny.
Theory predicts patterns of defense across taxa based on notions of tradeoffs and synergism among defensive traits when plants and herbivores coevolve. Because the expression of characters changes ontogenetically, the evolution of plant strategies may be best understood by considering multiple traits along a trajectory of plant development. Here we addressed the ontogenetic expression of chemic...
متن کاملLeaf herbivory and nutrients increase nectar alkaloids.
Correlations between traits may constrain ecological and evolutionary responses to multispecies interactions. Many plants produce defensive compounds in nectar and leaves that could influence interactions with pollinators and herbivores, but the relationship between nectar and leaf defences is entirely unexplored. Correlations between leaf and nectar traits may be mediated by resources and prio...
متن کاملDifferentiation of persistent anatomical defensive structures is costly and determined by nutrient availability and genetic growth-defence constraints.
Conifers exhibit a number of chemical and anatomical mechanisms to defend against pests and pathogens. Theory predicts an increased investment in plant defences under limited nutrient availability, but while this has been demonstrated for chemical defences, it has rarely been shown for anatomical defensive structures. In a long-lived woody plant, we tested the hypothesis that limited nutrient a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant biology
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2017